Solution to Assignment 3

Supplementary Problems

1. Express the straight line $a x+b y=1, a, b>0$, in polar coordinates. What is the range of θ ?
Solution. Let $c=\sqrt{a^{2}+b^{2}}$. Equation is

$$
1=r(a \cos \theta+b \sin \theta)=r c\left(\frac{a}{c} \cos \theta+\frac{b}{c} \sin \theta\right)=r c \sin (\theta+\alpha)
$$

where $\alpha \in(0, \pi / 2)$ satisfies $\sin \alpha=a / c$. We have

$$
r=\frac{1}{c \sin (\theta+\alpha)}
$$

and r is positive only when $\theta+\alpha \in(0, \pi)$. Therefore, the straight line is given by

$$
r=\frac{1}{c \sin (\theta+\alpha)}, \quad \theta \in(-\alpha,-\alpha+\pi)
$$

2. Express the hyperbola $x^{2}-y^{2}=1(y \geq 0)$ in polar coordinates.

Solution. From $1=r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=r^{2} \cos 2 \theta$ we get

$$
r=\frac{1}{\sqrt{\cos 2 \theta}}
$$

where $\theta \in(-\pi / 4, \pi / 4)$.

